Homework assignment 8A: Solutions

1. According to the Federal Reserve System, 46% of U.S. households have credit-card debt. For a simple random sample of size $n=30$, let \hat{p} be the proportion of households with credit-card debt. What is $\mathbb{E}[\hat{p}]$ and $\sigma_{\hat{p}}$? Determine the probability that: (a) At least 10 households have credit card debt (b) At most 12 households have credit card debt.

Answer: $p=0.46, q=0.54, n=30, n p>5$, and $n q>5$, so $\mathbb{E}[\hat{p}]=p=0.46, \sigma_{\hat{p}}=\sqrt{\frac{0.46 * 0.54}{30}}=0.091$, and $\hat{p} \sim \mathcal{N}(0.46,0.091)$
(a)

$$
\begin{aligned}
P\left[\hat{p}>\frac{10}{30}\right] & =P[\hat{p}>0.333] \\
& =P\left[\frac{\hat{p}-p}{\sigma_{\hat{p}}}>\frac{0.333-0.46}{0.0901}\right] \\
& =P[z>-1.3956]=1-0.0814=0.9186
\end{aligned}
$$

(b)

$$
\begin{aligned}
P\left[\hat{p}<\frac{12}{30}\right] & =P[\hat{p}<0.4] \\
& =P\left[\frac{\hat{p}-p}{\sigma_{\hat{p}}}<\frac{0.4-0.46}{0.0901}\right] \\
& =P[z<-0.6593]=0.2548
\end{aligned}
$$

2. According to the Investment Company Institute, 40% of U.S. households have an Individual Retirement Account (IRA). Assuming the population proportion to be 0.40 and that a simple random sample of 400 households has been selected:

- What is the expected value of \hat{p}, the proportion in the sample having an IRA?
Answer: $p=0.4, q=0.6, n=400, n p>5$, and $n q>5$, so $\mathbb{E}[\hat{p}]=p=0.4$
- What is the standard error of the sampling distribution of the proportion?
Answer: $\sigma_{\hat{p}}=\sqrt{\frac{0.4 * 0.6}{400}}=0.0245$, and $\hat{p} \sim \mathcal{N}(0.4,0.0245)$
- What is the probability that at least 35% of those in the sample will have an IRA?

Answer:

$$
\begin{aligned}
P[\hat{p}>0.35] & =P\left[\frac{\hat{p}-p}{\sigma_{p}}>\frac{0.35-0.4}{0.0245}\right] \\
& =P[z>-2.04]=1-0.0207=0.9793
\end{aligned}
$$

- What is the probability that between 38% and 45% of those in the sample will have an IRA?
Answer:

$$
\begin{aligned}
P[0.38<\hat{p}<0.45] & =P\left[\frac{0.38-0.4}{0.0245}<\frac{\hat{p}-p}{\sigma_{p}}<\frac{0.45-0.4}{0.0245}\right] \\
& =P[-0.82<z<2.04] \\
& =0.9793-0.2061=0.7732
\end{aligned}
$$

3. A simple random sample with $n=300$ is drawn from a population in which $p=0.4$. Determine the following probabilities for \hat{p}, the proportion of successes in this sample: $P[\hat{p}=0.4], P[\hat{p}>0.35]$, $P[0.38<\hat{p}<0.42], P[\hat{p}<0.45]$

Answer: $p=0.4, q=0.6, n=300, n p>5$, and $n q>5$, so $\mathbb{E}[\hat{p}]=p=0.46, \sigma_{\hat{p}}=\sqrt{\frac{0.4 * 0.6}{300}}=0.0283$, and $\hat{p} \sim \mathcal{N}(0.4,0.0283)$

$$
\begin{gathered}
P[\hat{p}=0.4]=0, \text { why? } \\
P[\hat{p}>0.35]= \\
=P\left[\frac{\hat{p}-p}{\sigma_{p}}>\frac{0.35-0.4}{0.0283}\right] \\
=P[z>-1.77]=1-0.0384=0.9616
\end{gathered}
$$

$$
\begin{aligned}
P[0.38<\hat{p}<0.42] & =P\left[\frac{0.38-0.4}{0.0283}<\frac{\hat{p}-p}{\sigma_{p}}<\frac{0.42-0.4}{0.0283}\right] \\
& =P[-0.71<z<0.71]= \\
& =0.7611-0.2389=0.5222 \\
P[\hat{p}<0.45] & =P\left[\frac{\hat{p}-p}{\sigma_{p}}<\frac{0.45-0.4}{0.0283}\right] \\
& =P[z<1.77]=0.9616
\end{aligned}
$$

4. A population of 500 values is distributed such that $\mu=\$ 1000$ and $\sigma=\$ 400$. For a simple random sample of $n=200$ values selected without replacement, what is is $\mathbb{E}[\bar{X}]$ and $\sigma_{\bar{X}}$?

Answer: $n=200$, so \bar{X} is approximately normally distributed by the central limit theorem with

$$
\begin{gathered}
\mathbb{E}[\bar{X}]=\mu=1000 \\
\sigma_{\bar{X}}=\frac{\sigma}{\sqrt{n}} \times \sqrt{\frac{N-n}{N-1}}=\frac{400}{\sqrt{200}} \times \sqrt{\frac{500-200}{500-1}}=21.9308
\end{gathered}
$$

5. A civic organization includes 200 members, who have an average income of $\$ 58,000$, with a standard deviation of $\$ 10,000$. A simple random sample of $n=30$ members is selected to participate in the annual fund-raising drive. What is the probability that the average income of the fund-raising group will be at least $\$ 60,000$?

Answer: $n=30$, so \bar{X} is approximately normally distributed by the central limit theorem with

$$
\begin{gathered}
\mathbb{E}[\bar{X}]=\mu=58000 \\
\sigma_{\bar{X}}=\frac{\sigma}{\sqrt{n}} \times \sqrt{\frac{N-n}{N-1}}=\frac{10000}{\sqrt{30}} \times \sqrt{\frac{200-30}{200-1}}=1687.4748
\end{gathered}
$$

In other words, $\bar{X} \sim \mathcal{N}(58000,1687.4748)$

$$
P[\bar{X}>60000]=P[z>1.19]=1-0.8830=0.1170
$$

6. A firm's receiving department has just taken in a shipment of 300 generators, 20% of which are defective. The quality control inspector has been instructed to reject the shipment if, in a simple random sample of $40,15 \%$ or more are defective. What is the probability that the shipment will be rejected?

Answer: $p=0.2, q=0.8, N=300, n=40, n$ is large relative to N, $n p>5$, and $n q>5$, so $\mathbb{E}[\hat{p}]=p=0.2$, and

$$
\sigma_{\hat{p}}=\sqrt{\frac{p q}{n}} \times \sqrt{\frac{N-n}{N-1}}=\sqrt{\frac{0.2 * 0.8}{40}} \times \sqrt{\frac{300-40}{300-1}}=0.590
$$

In other words $\hat{p} \sim \mathcal{N}(0.2,0.0590)$
A sample will be rejected whenever $\hat{p}>0.15$, so

$$
P[\hat{p}>0.15]=P\left[z>\frac{0.15-0.2}{0.0590}=P[z>-0.85]=0.8023\right.
$$

