Homework assignment 7

1. Suppose $x \sim \mathcal{N}(20,4)$ (That is, x is normally distributed with mean 20 and standard deviation 4), determine the following: $P[x>20], P[16<x<24], P[x<12]$, $P[x=22], P[12<x<28]$, and $P[x>16]$.

Answer: For all these probabilities, you need to standardize the values so that you can use the standard normal distribution table. So:

$$
\begin{aligned}
& P[x>20]=P\left[\frac{x-20}{4}>\frac{20-20}{4}\right]=P[z>0]=1-P[z<0]=1-0.5=0.5 \\
& P[16<x<24]=P\left[\frac{16-20}{4}<\frac{x-20}{4}<\frac{24-20}{4}\right] \\
& =P[-1<z<1] \\
& =P[z<1]-P[z<-1]=0.8413-0.1587=0.6827 \\
& P[x<12]=P\left[\frac{x-20}{4}<\frac{12-20}{4}\right]=P[z<-2]=0.0228 \\
& P[x=22]=0 \text { because } x \text { is continuous } \\
& P[12<x<28]=P\left[\frac{12-20}{4}<\frac{x-20}{4}<\frac{28-20}{4}\right] \\
& =P[-2<z<2] \\
& =P[z<2]-P[z<-2]=0.9772-0.0228=0.9545 \\
& P[x>16]=P\left[\frac{x-20}{4}>\frac{16-20}{4}\right]=P[z>-1]=1-P[z<-1]=1-0.1587=0.8413
\end{aligned}
$$

2. Suppose $x \sim \mathcal{N}(25,5)$ determine the following probabilities: $P[x>25], P[20<x<$ 30] $, P[x<30], P[x=26.2], P[15<x<25]$, and $P[x>15]$.

Answer: Again we need to standardize, then use the z table.

$$
\begin{gathered}
P[x>25]=P[z>0]=1-P[z<0]=1-0.5=05 \\
P[20<x<30]=P[-1<z<1]=P[z<1]-P[z<-1]=0.8413-0.1587=0.6827
\end{gathered}
$$

$$
\begin{gathered}
P[x<30]=P[z<1]=0.8413 \\
P[x=26.2]=0 \text { because } x \text { is continuous } \\
P[15<x<25]=P[-2<z<0]=P[z<0]-P[z<-2]=0.5-0.0228=0.4772 \\
P[x>15]=P[z>-2]=1-P[z<-2]=1-0.0228=0.9772
\end{gathered}
$$

3. In 2007, the average conventional first mortgage for new single-family homes was $\$ 360,000$. Assuming a normal distribution and a standard deviation of $\$ 30,000$, what proportion of the mortgages were:

- more than $\$ 360,000$?
- between $\$ 300,000$ and $\$ 420,000$?
- between $\$ 330,000$ and $\$ 390,000$?
- more than $\$ 270,000$?

Answer: Let x be mortgage value, then $x \sim \mathcal{N}(\$ 360,000, \$ 30,000)$. Again, don't forget we need to standardize.

$$
\begin{gathered}
P[x>\$ 360,000]=P[z>0]=0.5 \\
P[\$ 300,000<x<420,000]=P[-2<z<2]=0.9545 \\
P[330,000<x<390,000]=P[-1<z<1]=0.6827 \\
P[x>270,000]=P[z>-3]=1-P[z<-3]=0.9987
\end{gathered}
$$

4. It has been reported that the average hotel check-in time, from curbside to delivery of bags into the room, is 12.0 minutes. An Li has just left the cab that brought her to her hotel. Assuming a normal distribution with a standard deviation of 2.0 minutes, what is the probability that the time required for An Li and her bags to get to the room will be:

- greater than 14.0 minutes?
- between 10.0 and 14.0 minutes?
- less than 8.0 minutes?
- between 10.0 and 16.0 minutes?

Answer: Let x be the time it takes the bags to get delivered, then $x \sim \mathcal{N}(12,2)$. Don't forget we need to standardize values of x so we can use the standard normal distribution table.

$$
\begin{gathered}
P[x>14]=P[z>1]=0.1587 \\
P[10<x<14]=P[-1<z<1]=0.6827 \\
P[x<8]=P[z<-2]=0.0228 \\
P[10<x<16]=P[-1<z<2]=0.8186
\end{gathered}
$$

5. MENSA is an organization whose members possess $I Q s$ in the top 2% of the population. If $I Q s$ are normally distributed, with mean 100 and a standard deviation of 16 , what is the minimum $I Q$ required for admission to MENSA?

Answer: Let x be a continuous random variable representing $I Q$ score, then $x \sim$ $\mathcal{N}(100,16)$. Let k be the minimum $I Q$ score required for admission to MENSA.

Since only the top 2% qualify for MENSA membership, $P[x>k]=0.02$. To find k we need to use the z table back wards:

$$
\begin{aligned}
P[x>k]=0.02 & \Rightarrow P\left[\frac{x-\mu}{\sigma}>\frac{k-\mu}{\sigma}\right]=0.02 \\
& \Rightarrow P\left[z>\frac{k-100}{16}\right]=0.02 \\
& \Rightarrow 1-P\left[z<\frac{k-100}{16}\right]=0.02 \\
& \Rightarrow P\left[z<\frac{k-100}{16}\right]=0.98
\end{aligned}
$$

Now, go to your z table (attached below) and try to find a z score which corresponds to the probability 0.98 . You should notice that the z score we are looking for falls between $z=2.05$ and $z=2.06$, because $P[z<2.05]=0.9798$ and $P[z<20.6]=0.9803$. Here we should choose $z=2.05$ because it is slightly closer to the probability of 0.98 , but it shouldn't make a big difference if we chose $z=2.06$ instead.

Now that we have determined z, we can use it to solve for k.

$$
\begin{aligned}
z<\frac{k-100}{16} & \Rightarrow 2.05<\frac{k-100}{16} \\
& \Rightarrow 2.05 * 16<k-100 \\
& \Rightarrow 32.8<k-100 \\
& \Rightarrow k>132.8
\end{aligned}
$$

Consequently, the 132.8 is the minimum $I Q$ required for admission to MENSA.
6. Suppose the height, x, of adults in inches, is a normally distributed with mean 70 . If $P[x>79]=0.025$ what is the standard deviation of this random normal variable?

Answer: Again, here were are using the z table back wards to solve for σ

$$
\begin{aligned}
P[x>79]=0.025 & \Rightarrow P\left[\frac{x-70}{\sigma}>\frac{79-70}{\sigma}\right]=0.025 \\
& \Rightarrow P\left[z>\frac{9}{\sigma}\right]=0.025 \\
& \Rightarrow 1-P\left[z<\frac{9}{\sigma}\right]=0.025 \\
& \Rightarrow P\left[z<\frac{9}{\sigma}\right]=0.975
\end{aligned}
$$

Now we need to locate the z score corresponding to the probability 0.975 in the z table. From the table, you will find that $z=1.96$.

Now we can use $z=1.96$ to solve for the standard deviation σ.

$$
\begin{aligned}
z<\frac{9}{\sigma} & \Rightarrow 1.96<\frac{9}{\sigma} \\
& \Rightarrow 1.96 \sigma<9 \\
& \Rightarrow \sigma<\frac{9}{1.96}=4.59
\end{aligned}
$$

