Homework assignment 6a

1. A discrete random variable x takes the values $\{3, 8, 10\}$ with the respective probabilities 0.2, 0.7, and 0.1. Determine the mean, variance, and standard deviation of x.

Answer:

$\mathbb{E}[x] = 7.2$	x_i	$P[x_i]$	$x_i P[x_i]$	$(x_i - P[x_i])^2 P[x_i]$
L]	3	0.20	0.60	3.53
$\sigma^2 - 4.76$	8	0.70	5.60	0.45
0 = 1.10	10	0.10	1.00	0.78
$\sigma = 2.18$		1.0	7.20	4.76

2. Ed Tompkins, the assistant dean of a business school, has applied for the position of dean of the school of business at a much larger university. The salary at the new university has been advertised as \$200,000. He has been told by friends within the administration of the larger university that his chances of getting the position are "about 60%." If Ed stays at his current position, his salary next year will be \$120,000. Assuming that his friends have accurately assessed his chances of success, what is Ed's expected salary for next year?

Answer: Let x be Ed's salary next year. The probability distribution of x is:

$\mathbb{E}[x] = \$168,000$	x_i	$P[x_i]$	$x_i P[x_i]$
	\$200,000	0.60	120,000
	\$120,000	0.40	48,000
		1.0	\$168,000

3. A music shop is promoting a sale in which the purchaser of a compact disk can roll a die, then deduct a dollar from the retail price for each dot that shows on the rolled die. It is equally likely that the die will come up any integer from 1 through 6. The owner of the music shop pays \$5.00 for each compact disk, then prices them at \$9.00. During this special promotion, what will be the shop's average profit per compact disk sold? What's the standard deviation of the shop's profit?

Answer: The profit will be revenue less costs. Revenue depends on the number of dots that show up on the rolled die. In particular, revenue will be 9 minus the number of dots that show up on the rolled die. See table below:

	N. of	Revenue	x_i	$P[x_i]$	$x_i P[x_i]$
	dots		Profit		
So, the expected	1	\$8 = \$9 - \$1	\$3 = \$8 - \$5	0.166667	0.50
profit per sale is:	2	\$7	\$2	0.166667	0.33
1 1	3	\$6	\$1	0.166667	0.17
$\mathbb{F}[x] = \$0.5$	4	\$5	\$0	0.166667	0.00
$\mathbb{E}[x] = 0.0$	5	\$4	- \$1	0.166667	-0.17
	6	\$3	-\$2	0.166667	-0.33
				1	\$0.50

4. Suppose you play the following game. A gambler tosses a fair coin repeatedly until it comes up heads [this can go on for ever]. If heads appears on the first roll, she pays you \$2. If heads appears on the second throw, she pays you \$4; if on the third, she pays you \$8; if on the fourth, she pays you \$16; and so on doubling the payoff each time. Let x represent the payoff of this game. What's $\mathbb{E}[x]$? How much would you be welling to pay to play this game?

Answer: The first thing you need to realize in this problem is that it can go on to infinity. The game *does not* stop at four rounds. The random variable x representing the payoffs of this game takes on the values 0, 2, 2², 2³, 2⁴, 2⁵, and so on. The table below shows the probability distribution of x. Notice that $\sum_{i=1}^{n} x_i P[x_i] = 1 + 1 + \dots + 1$ all the way to infinity. Consequently, the expected value of x is $\mathbb{E}[x] = +\infty$

Number	x =	p[x]	$x_i P[x_i]$
of heads	payoff		
1	2	$\frac{1}{2}$	1
2	2^2	$\frac{1}{2^2}$	1
3	2^3	$\frac{1}{2^3}$	1
4	2^{4}	$\frac{1}{2^4}$	1
5	2^{5}	$\frac{1}{2^5}$	1
:	:	÷	:
n	2^n	$\frac{1}{2^n}$	1
:	÷	•	•