Homework Assignment 2

Candidate	Net worth	$x_{i}-\bar{x}$	$\left\|x_{i}-\bar{x}\right\|$	$\left(x_{i}-\bar{x}\right)^{2}$
Sanders	0.7	-391.9	391.9	153585.61
Paul	2	-390.6	390.6	152568.36
Christie	3	-389.6	389.6	151788.16
Cruz	3.5	-389.1	389.1	151398.81
Huckabee	9	-383.6	383.6	147148.96
Kasich	10	-382.6	382.6	146382.76
Bush	22	-370.6	370.6	137344.36
Carson	26	-366.6	366.6	134395.56
Chafee	32	-360.6	360.6	130032.36
Clinton	45	-347.6	347.6	120825.76
Fiorina	58	-334.6	334.6	111957.16
Trump	4500	4107.4	4107.4	16870734.76
	$\sum_{i=1}^{12} x_{i}=$	$\sum_{i=1}^{12}\left(x_{i}-\bar{x}\right)=$	$\sum_{i=1}^{12}\left\|x_{i}-\bar{x}\right\|=$	$\sum_{i=1}^{12}\left(x_{i}-\bar{x}\right)^{2}=$
	4711.2	0	8214.8	18408162.62

- Mean: $\bar{x}=\frac{\sum_{i=1}^{12} x_{i}}{12}=392.6$
- Median: $\frac{10+22}{2}=16$
- Mode: All observation occur once. So, each is a mode.
- Range: $4500-0.7=4499.3$
- Quartiles: The number of observations is even, so we will need to interpolate.
$\star Q_{1}=\frac{12+1}{4}=3.25$. So, Q_{1} is between the $3^{\text {rd }}$ and $4^{\text {th }}$ candidate. Since there is no $3.25^{\text {th }}$ candidate, we need to go 0.25 of the way between the $3^{r d}$ and $4^{\text {th }}$ candidates to find Q_{1}. That is, $Q_{1}=3+0.25 \times(3.5-3)=3.125$
$\star Q_{2}=\frac{2(12+1)}{4}=6.5$. So, Q_{2} is between the $6^{\text {th }}$ and $7^{\text {th }}$ candidate. Since there is no $6.5^{\text {th }}$ candidate, we need to go 0.5 of the way between the $6^{\text {th }}$ and $7^{\text {th }}$ candidates
to find Q_{2}. That is, $Q_{2}=10+0.5 \times(22-10)=16$. Q_{2} is also the median.
$\star Q_{3}=\frac{3(12+1)}{4}=9.75$. So, Q_{3} is between the $9^{\text {th }}$ and $10^{\text {th }}$ candidate. Since there is no $9.75^{t h}$ candidate, we need to go 0.75 of the way between the $9^{\text {th }}$ and $10^{\text {th }}$ candidates to find Q_{3}. That is, $Q_{3}=32+0.75 \times(45-$ $32)=41.75$.
- Mean Absolute Deviation: $M A D=\frac{\sum_{i=1}^{12}\left|x_{i}-\bar{x}\right|}{12}=684.567$
- Variance: $\sigma^{2}=\frac{\sum_{i=1}^{12}\left(x_{i}-\bar{x}\right)^{2}}{12-1}=\frac{18408162.62}{11}=1673469.329$
- Standard Deviation: $s=\sqrt{\sigma^{2}}=\sqrt{1673469.329}=1293.626$

